Dynamic Load Sharing Behavior for the Pitch Drive in MW Wind Turbines

Author:

Hu Congfang1,Yuan Tao1,Yang Shiping1,Hu Yunbo2,Liang Xiao1

Affiliation:

1. School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China

2. NFAIC High Precision Transmission Co., Ltd., Zhuzhou 412002, China

Abstract

For a wind energy system, main speed-increasing gearboxes, pitch drives and yaw drives are composed of a multistage planetary gear system. However, inevitable errors in the manufacturing and assembling of the gears lead to uneven load of distribution in the planetary gear system; thus, its service life and reliability decrease greatly, which would eventually affect the normal operation of the whole wind power system. In this study, a dynamic load sharing model of pitch drive is established with a lumped-parameter method. Given the manufacturing and assembly errors and central floating gear, the dynamic equations for each component, the stiffness matrix and damping matrix, the dynamic load sharing coefficient and the floating displacement of the sun gear are obtained according to the dynamic meshing force and damping load. Furthermore, the load sharing coefficient for external and internal meshing of the pitch drive for a 2 MW wind turbine with a three-stage planetary gear are achieved. Then, the floating displacement of the sun gear and the displacement of other gears are also obtained. Moreover, the influence of both external and internal meshing stiffness, the eccentric error and tooth frequency error for all components on the load sharing coefficient of all stages are investigated. Lastly, the theoretical components displacement of this model is compared with experiment results of the pitch drive under 50%, 100% and 150% rated torque in a test rig; the correctness of the model is verified by the experiment results.

Funder

National Natural Science Foundation of China

China Scholarship Council

Construction Project of National Independent Innovation Demonstration Area of Xiangtan

Science and Technology Innovation Program of Hunan Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3