Abstract
The primary noise sources of the vehicle are the engine, exhaust, aeroacoustic noise, and tire–pavement interaction. Noise generated by the first three factors can be reduced by replacing the combustion engine with an electric motor and optimizing aerodynamic design. Currently, a dominant noise within automobiles occurs from the tire–pavement interaction over a speed of 70–80 km/h. Most noise suppression efforts aim to use sound absorbers and cavity resonators to narrow the bandwidth of acoustic frequencies using foams. We demonstrate a technique utilizing acoustic metasurfaces (AMSes) with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. A simple technique is demonstrated that utilizes acoustic metalayers with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. The proposed design can significantly reduce the noise arising from tire–pavement interaction over a broadband of acoustic frequencies under 1000 Hz and over a wide range of vehicle speeds using a negative effective dynamic mass density approach. The experiment demonstrated that the sound transmission loss of AMSes is 2–5 dB larger than the acoustic foam near the cavity mode, at 200–300 Hz. The proposed approach can be extended to the generalized area of acoustic and vibration isolation.
Funder
National Science Foundation
Shanghai NSF
Subject
General Materials Science
Reference39 articles.
1. Transportation noise pollution and cardiovascular disease
2. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe;Fritschi,2011
3. Regulation (EU) No 540/2014 of the European Parliament and of the Council of 16 April 2014—On the Sound Level of Motor Vehicles and of Replacement Silencing Systems, and Amending Directive 2007/46/EC and Repealing Directive 70/157/EEChttps://eur-lex.europa.eu/eli/reg/2014/540/oj
4. Noise source characteristics in the ISO 362 vehicle pass-by noise test: Literature review
5. Effects of Speed on Tire–Pavement Interaction Noise (Tread-Pattern–Related Noise and Non–Tread-Pattern–Related Noise)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献