Abstract
The possibility of obtaining composite micropowders of the W-C-Co system with a spherical particle shape having a submicron/nanoscale internal structure was experimentally confirmed. In the course of work carried out, W-C-Co system nanopowders with the average particle size of approximately 50 nm were produced by plasma-chemical synthesis. This method resulted in the uniform distribution of W, Co and C among the nanoparticles of the powder in the nanometer scale range. Dense microgranules with an average size of 40 microns were obtained from the nanopowders by spray drying. The spherical micropowders with an average particle size of 20 microns were received as a result of plasma treatment of 25.36 microns microgranule fraction. The spherical particles obtained in the experiments had a predominantly dense microstructure and had no internal cavities. The influence of plasma treatment process parameters on dispersity, phase, and chemical composition of spherical micropowders and powder particles microstructure has been established.
Funder
Russian Science Foundation
Subject
General Materials Science
Reference22 articles.
1. Tverdye Splavi;Falkovskiy,2005
2. Tungsten Carbides: Structure, Properties and Application in Hardmetals;Kurlov,2016
3. Cemented carbides for mining, construction and wear parts;Konyashin,2014
4. Additive manufacturing of WC-Co hardmetals: a review
5. Metal Powder for Additive Manufacturing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献