Influence of Liquid-to-Solid and Alkaline Activator (Sodium Silicate to Sodium Hydroxide) Ratios on Fresh and Hardened Properties of Alkali-Activated Palm Oil Fuel Ash Geopolymer

Author:

Kwek Shi YingORCID,Awang HanizamORCID,Cheah Chee BanORCID

Abstract

Malaysia is one of the largest palm oil producers in the world and its palm oil industry is predicted to generate a large amount of waste, which increases the need to modify it for sustainable reuse. The green geopolymers produced from industrial waste can be a potential substitute for cementitious binders. This type of polymer helps reduce dependency on cement, a material that causes environmental problems due to its high carbon emissions. Palm oil fuel ash (POFA) geopolymer has been widely investigated for its use as a sustainable construction material. However, there is still uncertainty regarding the total replacement of cement with POFA geopolymer as a binder. In this study, we examined the effects of different material design parameters on the performance of a POFA-based geopolymer as a building material product through iterations of mixture optimisation. The material assessed was a single raw precursor material (POFA) activated by an alkaline activator (a combination of sodium hydroxide and sodium silicate with constant concentration) and homogenised. We conducted a physical property test, compressive strength test, and chemical composition and microstructural analyses to evaluate the performance of the alkali-activated POFA geopolymer at 7 and 28 days. According to the results, the optimum parameters for the production of alkali-activated POFA paste binder are 0.6 liquid-to-solid ratio and 2.5 alkaline activator ratio. Our results show that the use of alkali-activated POFA geopolymer is technically feasible, offering a sustainable and environmentally friendly alternative for POFA disposal.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3