Affiliation:
1. Beijing Institute of Radio Measurement, Beijing 100854, China
Abstract
Limited by meteorological conditions, airspace, complex terrain and other factors, airborne millimeter-wave InSAR will inevitably face the situation of no control point layout when acquiring terrain data in the difficult mapping areas in Southwest China, which increases the difficulty of subsequent data processing. Moreover, the layout of control points in difficult mapping areas consumes a lot of manpower and time, which is not suitable for large-scale high-precision topographic mapping. To solve these problems, this paper proposes an automatic extraction of tie-points and interferometric calibration technology based on tie-points. This technology develops the automatic extraction algorithm of tie-points based on SAR + SIFT + RANSAC to obtain evenly distributed tie-points of adjacent images, and uses the evenly distributed tie-points as real known points to recalibrate the interference parameters, then carries out elevation transfer and elevation inversion through the tie-points of overlapping areas, thus realizing high-precision mapping without control points for airborne millimeter-wave InSAR. This paper uses measured data to verify the technology, and compares it with the areas with control points and marking points. The comparison results of elevation accuracy prove the feasibility and effectiveness of this method. This paper also discusses the difficulties in the treatment of typical areas, such as water areas, urban areas and mountain areas, and gives reasonable solutions that have good engineering application value.
Funder
Key R&D Program Projects in Hainan Province
State Key Laboratory of Rail Transit Engineering Information
Key Projects of the Ministry of Science and Technology of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献