Multi-Swin Mask Transformer for Instance Segmentation of Agricultural Field Extraction

Author:

Zhong BoORCID,Wei TengfeiORCID,Luo Xiaobo,Du Bailin,Hu Longfei,Ao KaiORCID,Yang Aixia,Wu Junjun

Abstract

With the rapid development of digital intelligent agriculture, the accurate extraction of field information from remote sensing imagery to guide agricultural planning has become an important issue. In order to better extract fields, we analyze the scale characteristics of agricultural fields and incorporate the multi-scale idea into a Transformer. We subsequently propose an improved deep learning method named the Multi-Swin Mask Transformer (MSMTransformer), which is based on Mask2Former (an end-to-end instance segmentation framework). In order to prove the capability and effectiveness of our method, the iFLYTEK Challenge 2021 Cultivated Land Extraction competition dataset is used and the results are compared with Mask R-CNN, HTC, Mask2Former, etc. The experimental results show that the network has excellent performance, achieving a bbox_AP50 score of 0.749 and a segm_AP50 score of 0.758. Through comparative experiments, it is shown that the MSMTransformer network achieves the optimal values in all the COCO segmentation indexes, and can effectively alleviate the overlapping problem caused by the end-to-end instance segmentation network in dense scenes.

Funder

Ministry of Science and Technology of the People's Republic of China

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Using remote sensing for agricultural statistics;Carfagna;Int. Stat. Rev.,2005

2. Detection of cropland field parcels from Landsat imagery;Graesser;Remote Sens. Environ.,2017

3. A 2010 map estimate of annually tilled cropland within the conterminous United States;Johnson;Agric. Syst.,2013

4. Rudel, T.K., Schneider, L., Uriarte, M., Turner, B.L., and Grauj, R. (2022, December 02). Agricultural Intensification and Changes in Cultivated Areas. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=c7de4819aa39593de58f99ec0510d8b6&site=xueshu_se&hitarticle=1.

5. Taravat, A., Wagner, M.P., Bonifacio, R., and Petit, D. (2021). Advanced Fully Convolutional Networks for Agricultural Field Boundary Detection. Remote Sens., 13.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MATNet: multiattention Transformer network for cropland semantic segmentation in remote sensing images;International Journal of Digital Earth;2024-08-19

2. A Fine Classification Mapping Method for Crops Based on Time Series Chinese Gaofen Analysis Ready Data;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Deep learning in cropland field identification: A review;Computers and Electronics in Agriculture;2024-07

4. MaskCD: A Remote Sensing Change Detection Network Based on Mask Classification;IEEE Transactions on Geoscience and Remote Sensing;2024

5. Guided Local Feature Matching with Transformer;Remote Sensing;2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3