Abstract
Novel approaches to estimate information measures using neural networks are well-celebrated in recent years both in the information theory and machine learning communities. These neural-based estimators are shown to converge to the true values when estimating mutual information and conditional mutual information using independent samples. However, if the samples in the dataset are not independent, the consistency of these estimators requires further investigation. This is of particular interest for a more complex measure such as the directed information, which is pivotal in characterizing causality and is meaningful over time-dependent variables. The extension of the convergence proof for such cases is not trivial and demands further assumptions on the data. In this paper, we show that our neural estimator for conditional mutual information is consistent when the dataset is generated with samples of a stationary and ergodic source. {In other words, we show that our information estimator using neural networks converges asymptotically to the true value with probability one. Besides universal functional approximation of neural networks, a core lemma to show the convergence is Birkhoff's ergodic theorem. Additionally, we use the technique to estimate directed information and demonstrate the effectiveness of our approach in simulations.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献