A Generalized Method for Modeling the Adsorption of Heavy Metals with Machine Learning Algorithms

Author:

Hafsa Noor,Rushd Sayeed,Al-Yaari MohammedORCID,Rahman MuhammadORCID

Abstract

Applications of machine learning algorithms (MLAs) to modeling the adsorption efficiencies of different heavy metals have been limited by the adsorbate–adsorbent pair and the selection of specific MLAs. In the current study, adsorption efficiencies of fourteen heavy metal–adsorbent (HM-AD) pairs were modeled with a variety of ML models such as support vector regression with polynomial and radial basis function kernels, random forest (RF), stochastic gradient boosting, and bayesian additive regression tree (BART). The wet experiment-based actual measurements were supplemented with synthetic data samples. The first batch of dry experiments was performed to model the removal efficiency of an HM with a specific AD. The ML modeling was then implemented on the whole dataset to develop a generalized model. A ten-fold cross-validation method was used for the model selection, while the comparative performance of the MLAs was evaluated with statistical metrics comprising Spearman’s rank correlation coefficient, coefficient of determination (R2), mean absolute error, and root-mean-squared-error. The regression tree methods, BART, and RF demonstrated the most robust and optimum performance with 0.96 ⫹ R2 ⫹ 0.99. The current study provides a generalized methodology to implement ML in modeling the efficiency of not only a specific adsorption process but also a group of comparable processes involving multiple HM-AD pairs.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3