Soft-Matter Physics Provides New Insights on Myocardial Architecture: Automatic and Quantitative Identification of Topological Defects in the Trabecular Myocardium

Author:

Auriau Johanne12ORCID,Usson Yves1ORCID,Jouk Pierre-Simon13ORCID

Affiliation:

1. Equipe Biologie Computationnelle et Modélisation, University Grenoble Alpes, CNRS, UMR 5525, VetAgroSup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France

2. Service de Cardiologie, CHU Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France

3. Service de Génétique, Génomique et Procréation, CHU Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France

Abstract

This article is the third in our series dedicated to the analysis of cardiac myoarchitecture as a nematic chiral liquid crystal (NCLC). Previously, we introduced the concept of topological defects (disclinations) and focused on their visual identification inside the compact myocardium. Herein, we investigate these using a mathematical and automated algorithm for the reproducible identification of a larger panel of topological defects throughout the myocardium of 13 perinatal and 11 early infant hearts. This algorithm identified an average of 29 ± 11 topological defects per slice with a 2D topological charge of m = +1/2 and an average of 27 ± 10 topological defects per slice with a 2D topological charge of m = −1/2. The excess of defects per slice with a 2D topological charge of m = +1/2 was statistically significant (p < 0.001). There was no significant difference in the distribution of defects with a 2D topological charge of m = +1/2 and m = −1/2 between perinatal and early infant hearts. These defects were mostly arranged in pairs, as expected in nematics, and located inside the trabecular myocardium. When isolated, defects with a 2D topological charge of m = +1/2 were located near the luminal extremity of the trabeculae and those with a 2D topological charge of m = −1/2 were located at the anterior and posterior part of the interventricular septum. These findings constitute an advance in the characterization of the deep cardiac myoarchitecture for application in developmental and pathological studies.

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3