Affiliation:
1. Department of Science and Mathematics, Rajamangala University of Technology Isan Surin Campus, Surin 32000, Thailand
2. Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
Abstract
In this paper, we propose two novel inertial forward–backward splitting methods for solving the constrained convex minimization of the sum of two convex functions, φ1+φ2, in Hilbert spaces and analyze their convergence behavior under some conditions. For the first method (iFBS), we use the forward–backward operator. The step size of this method depends on a constant of the Lipschitz continuity of ∇φ1, hence a weak convergence result of the proposed method is established under some conditions based on a fixed point method. With the second method (iFBS-L), we modify the step size of the first method, which is independent of the Lipschitz constant of ∇φ1 by using a line search technique introduced by Cruz and Nghia. As an application of these methods, we compare the efficiency of the proposed methods with the inertial three-operator splitting (iTOS) method by using them to solve the constrained image inpainting problem with nuclear norm regularization. Moreover, we apply our methods to solve image restoration problems by using the least absolute shrinkage and selection operator (LASSO) model, and the results are compared with those of the forward–backward splitting method with line search (FBS-L) and the fast iterative shrinkage-thresholding method (FISTA).
Funder
Science Research and Innovation Fund
NSRF via the program Management Unit for Human Resources & Institutional Development, Research and Innovation
Fundamental Fund 2023, Chiang Mai University
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)