Novel Algorithms with Inertial Techniques for Solving Constrained Convex Minimization Problems and Applications to Image Inpainting

Author:

Hanjing Adisak1,Suantai Suthep2

Affiliation:

1. Department of Science and Mathematics, Rajamangala University of Technology Isan Surin Campus, Surin 32000, Thailand

2. Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

In this paper, we propose two novel inertial forward–backward splitting methods for solving the constrained convex minimization of the sum of two convex functions, φ1+φ2, in Hilbert spaces and analyze their convergence behavior under some conditions. For the first method (iFBS), we use the forward–backward operator. The step size of this method depends on a constant of the Lipschitz continuity of ∇φ1, hence a weak convergence result of the proposed method is established under some conditions based on a fixed point method. With the second method (iFBS-L), we modify the step size of the first method, which is independent of the Lipschitz constant of ∇φ1 by using a line search technique introduced by Cruz and Nghia. As an application of these methods, we compare the efficiency of the proposed methods with the inertial three-operator splitting (iTOS) method by using them to solve the constrained image inpainting problem with nuclear norm regularization. Moreover, we apply our methods to solve image restoration problems by using the least absolute shrinkage and selection operator (LASSO) model, and the results are compared with those of the forward–backward splitting method with line search (FBS-L) and the fast iterative shrinkage-thresholding method (FISTA).

Funder

Science Research and Innovation Fund

NSRF via the program Management Unit for Human Resources & Institutional Development, Research and Innovation

Fundamental Fund 2023, Chiang Mai University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3