A Novel Decomposition-Based Multi-Objective Symbiotic Organism Search Optimization Algorithm

Author:

Ganesh Narayanan1ORCID,Shankar Rajendran2,Kalita Kanak3ORCID,Jangir Pradeep4ORCID,Oliva Diego5ORCID,Pérez-Cisneros Marco5ORCID

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India

2. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India

3. Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi 600062, India

4. Rajasthan Rajya Vidyut Prasaran Nigam, Losal, Jaipur 302006, India

5. Departamento de Innovación Basada en la Información y el Conocimiento, Universidad de Guadalajara, CUCEI, Guadalajara 44100, Mexico

Abstract

In this research, the effectiveness of a novel optimizer dubbed as decomposition-based multi-objective symbiotic organism search (MOSOS/D) for multi-objective problems was explored. The proposed optimizer was based on the symbiotic organisms’ search (SOS), which is a star-rising metaheuristic inspired by the natural phenomenon of symbioses among living organisms. A decomposition framework was incorporated in SOS for stagnation prevention and its deep performance analysis in real-world applications. The investigation included both qualitative and quantitative analyses of the MOSOS/D metaheuristic. For quantitative analysis, the MOSOS/D was statistically examined by using it to solve the unconstrained DTLZ test suite for real-parameter continuous optimizations. Next, two constrained structural benchmarks for real-world optimization scenario were also tackled. The qualitative analysis was performed based on the characteristics of the Pareto fronts, boxplots, and dimension curves. To check the robustness of the proposed optimizer, comparative analysis was carried out with four state-of-the-art optimizers, viz., MOEA/D, NSGA-II, MOMPA and MOEO, grounded on six widely accepted performance measures. The feasibility test and Friedman’s rank test demonstrates the dominance of MOSOS/D over other compared techniques and exhibited its effectiveness in solving large complex multi-objective problems.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3