On the Construction of Exact Numerical Schemes for Linear Delay Models

Author:

Mayorga Carlos Julio12,Castro María Ángeles1,Sirvent Antonio1,Rodríguez Francisco13ORCID

Affiliation:

1. Department of Applied Mathematics, University of Alicante, Apdo. 99, 03080 Alicante, Spain

2. Department of Mathematics, National Polytechnic School, Quito P.O. Box 17-01-2759, Ecuador

3. Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Apdo. 99, 03080 Alicante, Spain

Abstract

Exact numerical schemes have previously been obtained for some linear retarded delay differential equations and systems. Those schemes were derived from explicit expressions of the exact solutions, and were expressed in the form of perturbed difference systems, involving the values at previous delay intervals. In this work, we propose to directly obtain expressions of the same type for the fundamental solutions of linear delay differential equations, by considering vector equations with vector components corresponding to delay-lagged values at previous intervals. From these expressions for the fundamental solutions, exact numerical schemes for arbitrary initial functions can be proposed, and they may also facilitate obtaining explicit exact solutions. We apply this approach to obtain an exact numerical scheme for the first order linear neutral equation x′(t)−γx′(t−τ)=αx(t)+βx(t−τ), with the general initial condition x(t)=φ(t) for −τ≤t≤0. The resulting expression reduces to those previously published for the corresponding retarded equations when γ=0.

Funder

Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación

Conselleria de Innovación

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. Richtmyer, R.D., and Morton, K.W. (1967). Difference Methods for Initial Value Problems, Wiley-Interscience. [2nd ed.].

2. Thomas, J.W. (1995). Numerical Partial Differential Equations: Finite Difference Methods, Springer.

3. LeVeque, R.J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM.

4. Differential and difference equations;Potts;Am. Math. Mon.,1982

5. Knowles, I.W., and Lewis, R.T. (1984). Differential Equations, North-Holland.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3