Affiliation:
1. Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
2. School of Mathematics, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
Abstract
The double-controlled metric-type space (X,D) is a metric space in which the triangle inequality has the form D(η,μ)≤ζ1(η,θ)D(η,θ)+ζ2(θ,μ)D(θ,μ) for all η,θ,μ∈X. The maps ζ1,ζ2:X×X→[1,∞) are called control functions. In this paper, we introduce a novel generalization of a metric space called a double-composed metric space, where the triangle inequality has the form D(η,μ)≤αD(η,θ)+βD(θ,μ) for all η,θ,μ∈X. In our new space, the control functions α,β:[0,∞)→[0,∞) are composed of the metric D in the triangle inequality, where the control functions ζ1,ζ2:X×X→[1,∞) in a double-controlled metric-type space are multiplied with the metric D. We establish some fixed-point theorems along with the examples and applications.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献