Self-Supervised Representation Learning for Remote Sensing Image Change Detection Based on Temporal Prediction

Author:

Dong Huihui,Ma Wenping,Wu YueORCID,Zhang Jun,Jiao Licheng

Abstract

Traditional change detection (CD) methods operate in the simple image domain or hand-crafted features, which has less robustness to the inconsistencies (e.g., brightness and noise distribution, etc.) between bitemporal satellite images. Recently, deep learning techniques have reported compelling performance on robust feature learning. However, generating accurate semantic supervision that reveals real change information in satellite images still remains challenging, especially for manual annotation. To solve this problem, we propose a novel self-supervised representation learning method based on temporal prediction for remote sensing image CD. The main idea of our algorithm is to transform two satellite images into more consistent feature representations through a self-supervised mechanism without semantic supervision and any additional computations. Based on the transformed feature representations, a better difference image (DI) can be obtained, which reduces the propagated error of DI on the final detection result. In the self-supervised mechanism, the network is asked to identify different sample patches between two temporal images, namely, temporal prediction. By designing the network for the temporal prediction task to imitate the discriminator of generative adversarial networks, the distribution-aware feature representations are automatically captured and the result with powerful robustness can be acquired. Experimental results on real remote sensing data sets show the effectiveness and superiority of our method, improving the detection precision up to 0.94–35.49%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3