Optimal Walker Constellation Design of LEO-Based Global Navigation and Augmentation System

Author:

Guan Meiqian,Xu TianheORCID,Gao Fan,Nie Wenfeng,Yang Honglei

Abstract

Low Earth orbit (LEO) satellites located at altitudes of 500 km~1500 km can carry much stronger signals and move faster than medium Earth orbit (MEO) satellites at about a 20,000 km altitude. Taking advantage of these features, LEO satellites promise to make contributions to navigation and positioning where global navigation satellite system (GNSS) signals are blocked as well as the rapid convergence of precise point positioning (PPP). In this paper, LEO-based optimal global navigation and augmentation constellations are designed by a non-dominated sorting genetic algorithm III (NSGA-III) and genetic algorithm (GA), respectively. Additionally, a LEO augmentation constellation with GNSS satellites included is designed using the NSGA-III. For global navigation constellations, the results demonstrate that the optimal constellations with a near-polar Walker configuration need 264, 240, 210, 210, 200, 190 and 180 satellites with altitudes of 900, 1000, 1100, 1200, 1300, 1400 and 1500 km, respectively. For global augmentation constellations at an altitude of 900 km, for instance, 72, 91, and 108 satellites are required in order to achieve a global average of four, five and six visible satellites for an elevation angle above 7 degrees with one Walker constellation. To achieve a more even coverage, a hybrid constellation with two Walker constellations is also presented. On this basis, the GDOPs (geometric dilution of precision) of the GNSS with and without an LEO constellation are compared. In addition, we prove that the computation efficiency of the constellation design can be considerably improved by using master–slave parallel computing.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Development of the BeiDou Navigation Satellite System,2019

2. Innovation: Navigation from LEO 2017https://www.gpsworld.com/innovation-navigation-from-leo/

3. LEO constellation-augmented multi-GNSS for rapid PPP convergence

4. Integrated Precise Orbit Determination of Multi-GNSS and Large LEO Constellations

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3