Evaluation of the ERA5 Sea Surface Skin Temperature with Remotely-Sensed Shipborne Marine-Atmospheric Emitted Radiance Interferometer Data

Author:

Luo BingkunORCID,Minnett Peter J.ORCID

Abstract

Sea surface temperature is very important in weather and ocean forecasting, and studying the ocean, atmosphere and climate system. Measuring the sea surface skin temperature (SSTskin) with infrared radiometers onboard earth observation satellites and shipboard instruments is a mature subject spanning several decades. Reanalysis model output SSTskin, such as from the newly released ERA5, is very widely used and has been applied for monitoring climate change, weather prediction research, and other commercial applications. The ERA5 output SSTskin data must be rigorously evaluated to meet the stringent accuracy requirements for climate research. This study aims to estimate the accuracy of the ERA5 SSTskin fields and provide an associated error estimate by using measurements from accurate shipboard infrared radiometers: the Marine-Atmosphere Emitted Radiance Interferometers (M-AERIs). Overall, the ERA5 SSTskin has high correlation with ship-based radiometric measurements, with an average difference of~0.2 K with a Pearson correlation coefficient (R) of 0.993. Parts of the discrepancies are related to dust aerosols and variability in air-sea temperature differences. The downward radiative flux due to dust aerosols leads to significant SSTskin differences for ERA5. The SSTskin differences are greater with the large, positive air–sea temperature differences. This study provides suggestions for the applicability of ERA5 SSTskin fields in a selection of research applications.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3