Dynamics of Dalk Glacier in East Antarctica Derived from Multisource Satellite Observations Since 2000

Author:

Chen YimingORCID,Zhou Chunxia,Ai SongtaoORCID,Liang Qi,Zheng Lei,Liu Ruixi,Lei Haobo

Abstract

Monitoring variability in outlet glaciers can improve the understanding of feedbacks associated with calving, ocean thermal forcing, and climate change. In this study, we present a remote-sensing investigation of Dalk Glacier in East Antarctica to analyze its dynamic changes. Terminus positions and surface ice velocities were estimated from Landsat and Sentinel-1 data, and the high-precision Worldview digital elevation model (DEM) was generated to determine the location of the potential ice rumple. We detected the cyclic behavior of glacier terminus changes and similar periodic increases in surface velocity since 2000. The terminus retreated in 2006, 2009, 2010, and 2016 and advanced in other years. The surface velocity of Dalk Glacier has a 5-year cycle with interannual speed-ups in 2007, 2012, and 2017. Our observations show the relationship between velocity changes and terminus variations, as well as the driving role of the ice rumple. Ice velocity often increases after calving events and continuous retreats. The loss of buttressing provided by an ice rumple may be a primary factor for increases in ice velocity. Given the restriction of the ice rumple, the surface velocity remains relatively stable when the glacier advances. The calving events may be linked to the unstable terminus caused by the ice rumple.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3