SI-traceable Spectral Irradiance Radiometric Characterization and Absolute Calibration of the TSIS-1 Spectral Irradiance Monitor (SIM)

Author:

Richard Erik,Harber Dave,Coddington OdeleORCID,Drake Ginger,Rutkowski Joel,Triplett Matthew,Pilewskie Peter,Woods Tom

Abstract

The current implementation for continuous, long-term solar spectral irradiance (SSI) monitoring is the Total and Spectral Solar Irradiance Sensor (TSIS-1) Spectral Irradiance Monitor (SIM) that began operations from the International Space Station (ISS) in March 2018 and nominally provides an SSI spectrum every 12 h. Advances in both instrument design and spectral irradiance calibration techniques have resulted in the TSIS-1 SIM achieving higher absolute accuracy than its predecessor instrument in the wavelength range (200–2400 nm). A comprehensive detector-based Spectral Radiometer Facility (SRF) was developed in collaboration with the US National Institute for Standards and Technology (NIST) to ensure the ties to spectral SI standards in power and irradiance. Traceability is achieved via direct laser calibration of a focal plane electrical substitution radiometer (ESR) against a cryogenic radiometer in power and also irradiance responsivity via calibrated apertures. The SIM accuracy definition followed an absolute sensor approach based on a full radiometric measurement equation where component-level performance characterizations and calibrations were quantified with an associated uncertainty error budget and verified by independent measurements for each parameter. Unit-level characterizations were completed over the full operational envelope of external driving factors (e.g., pointing and temperature ranges) and were allowed for the independent parameterization of sub-assembly performance for expected operating conditions. Validation and final instrument end-to-end absolute calibration in the Laboratory for Atmospheric and Space Physics (LASP)-SRF achieved low combined standard uncertainty (uc < 0.25%, k = 1) in spectral irradiance.

Funder

NASA Earth Science Division

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. The Impact of Solar Variability on Climate

2. SOLAR INFLUENCES ON CLIMATE

3. Future Long-term Measurements of Solar Spectral Irradiance by the TSIS Spectral Irradiance Monitor: Improvements in Measurement Accuracy and Stability. In Proceedings 11th International Conference on New Developments and Applications in Optical Radiometry, Maui, HI, USA, 18–23 September 2012; Ikonen, E., Park, S., Eds.;Richard;Proceedings of the 11th International Conference on New Developments and Applications in Optical Radiometry,2012

4. Technical Requirements Document,2007

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3