Intensification of Lead, Copper and Antimony Removal Using Brown Algae Adsorption Coupled to Hydrodynamic Cavitation

Author:

Medina-Collana Juan Taumaturgo1ORCID,Sejje Suárez Wilfredo David1,Anyosa Cáceres Noemí1,Carrasco Venegas Luis Americo1,Diaz Bravo Pablo Belizario1,Lopez Herrera Jorge Amador1,Grados Gamarra Juan Herber1,Astocondor Villar Jacob1

Affiliation:

1. Faculty of Chemical Engineering, National University of Callao, Juan Pablo II 306 Avenue, Bellavista, Callao 07011, Peru

Abstract

In the present study, a calcium alginate bead adsorbent was prepared from brown algae (Macrosystis pyrifera) and was used for removal of Pb+2, Cu+2, and Sb+3 ions from aqueous solutions, using a fixed bed column. The initial concentration of metal ions, mass of adsorbent, recirculation flow, hydrodynamic cavitation, and contact time were examined, and the adsorption kinetics and isotherms were systematically studied. The Taguchi five-factor methodology was used for the development at three levels of experimentation. Experiment N° 24 (concentration, 10 mg/L; flow rate, 10 mL/s; adsorbent mass, 10 g; hydrodynamic cavitation with maximum air flow, and treatment time 240 min) resulted in the maximum removal of 92%, 78%, and 16% of lead, copper, and antimony ions, respectively. The average rate constants corresponding to pseudo-second-order kinetics for lead, copper, and antimony ions were 5.3 × 10−3, 1.4 × 10−3, and 7 × 10−5 g.mg−1min−1, respectively. In the adsorption process, they closely approximate to Langmuir and Freundlich isotherms, with adsorption capacities for Pb2+, Cu2+, and Sb3+ of 7.60, 2.07, and 0.37 mg/g, respectively, with good bioadsorption affinity of Pb > Cu > Sb. It was demonstrated that the bioadsorption equipment, with proper control of the factors, achieves concentration values of lead and copper ions below the current environmental regulations. The results of these studies indicated that calcium alginate is a promising adsorbent for separating and recovering heavy metal ions from contaminated water, although further research is needed for antimony ions.

Funder

Universidad Nacional del Callao

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Removal of lead ions from aqueous solution by modified nanocellulose;Environmental Monitoring and Assessment;2024-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3