Environmental Performance of China’s Industrial System Considering Technological Heterogeneity and Interaction

Author:

Li Lei12,Zhao Ruizeng34ORCID,Huang Feihua5

Affiliation:

1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. School of Business, Applied Technology College of Soochow University, Suzhou 215325, China

3. School of Economics and Management, Southwest University of Science and Technology, Mianyang 621000, China

4. School of Management, University of Science and Technology of China, Hefei 230026, China

5. School of Business, Soochow University, Suzhou 215012, China

Abstract

The industrial sector, the backbone of China’s economic development, is a key field that requires environmental management. The purpose of this study is to propose an improved data envelopment analysis (DEA) model to analyze the performance of provincial industrial systems (ISs) from 2011 to 2020 in China. To comprehensively characterize the operational framework of ISs, this study proposes an improved meta-frontier network DEA model. Unlike the existing models, the one proposed in this study not only considers the technical heterogeneity of ISs, but also reflects the interaction between IS subsystems. The empirical analysis yields valuable research findings. First, the overall environmental performance of Chinese ISs is generally low, with an average performance of 0.50, showing a U-shaped trend during the study period. Furthermore, significant regional differences are observed in the environmental performance of Chinese ISs. Second, the average performance of the production subsystem is 0.75, while the average performance of the pollution control subsystem (PTS) is 0.44. The low performance of the PTS pulls down the overall performance of Chinese ISs. Third, the technological level of Chinese ISs is low, with about 50% improvement potential. Finally, targeted suggestions to promote the green development of ISs are proposed on the basis of the empirical results.

Funder

Jiangsu Qing Lan Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3