Parametric Analysis and Multi-Objective Optimization of Pentamode Metamaterial

Author:

Zou Zhen12ORCID,Xu Fengxiang12,Pan Yuxiong12,Niu Xiaoqiang12,Fang Tengyuan12,Zeng Chao12

Affiliation:

1. Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China

Abstract

Pentamode metamaterial (PM) has enormous application potential in the design of lightweight bodies with superior vibration and noise-reduction performance. To offer systematic insights into the investigation of PMs, this paper studies the various effects (i.e., unit cell arrangement, material, and geometry) on bandgap properties through the finite element method (FEM). With regards to the influences of unit cell arrangements on bandgap properties, the results show that the PM with triangular cell arrangement (PMT) possesses better bandgap properties than the others. The effects of material and geometry on bandgap properties are then explored thoroughly. In light of the spring-mass system theory, the regulation mechanism of bandgap properties is discussed. Multi-objective optimization is conducted to further enhance the bandgap properties of PMT. Based on the Latin hypercube design and double-points infilling, a high-accuracy Kriging model, which represents the relationship between the phononic bandgap (PBG), single mode phononic bandgap (SPBG), double-cone width, and node radius, is established to seek the Pareto optimal solution sets, using the non-dominated sorting genetic algorithm (NSGA-II). A fitness function is then employed to obtain the final compromise solution. The PBG and total bandgap of PMT are widened approximately 2.2 and 0.27 times, respectively, while the SPBG is narrowed by about 0.51 times. The research offers important understanding for the investigation of PM with superior acoustic regulation capacity.

Funder

National Natural Science Foundation of China

111 Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3