Renewable-Energy-Powered Cellular Base-Stations in Kuwait’s Rural Areas

Author:

Baidas Mohammed W.ORCID,Almusailem Mastoura F.,Kamel Rashad M.,Alanzi Sultan Sh.ORCID

Abstract

Cellular network operators are actively expanding network coverage and capacity by deploying additional base-stations to provide mobile services to customers in rural areas. The increasing deployment of cellular base-stations has increased the power consumption, energy cost, and associated adverse environmental impact. This paper addresses the feasibility of using renewable energy sources to power off-grid rural 4G/5G cellular base-stations based on Kuwait’s solar irradiance and wind potentials. More importantly, a hybrid renewable energy system will be designed and modeled to meet realistic energy demands of remote base-stations and determine the optimum size of the hybrid system components. Particularly, the hybrid off-grid system may incorporate wind turbines (WTs), photovoltaic (PV) solar panels, converters, a battery bank (BB), and a back-up diesel generator (DG). Two remote cell-sites are considered, namely: (1) Jal-Alayah and (2) Wafra, where the Jal-Alayah cell-site is characterized with higher average wind speed (and wind potential), while the Wafra cell-site has higher average clearness index and solar irradiance. Various hybrid PV/wind electric system (HPWES) configurations are modeled and simulated via HOMER software, with the aim of determining the optimal configuration—in terms of net present cost (NPC)—in each cell-site. Specifically, the simulations have revealed that the WT-BB configuration is the most economical at the Jal-Alayah cell-site while requiring minimal land area and ensuring 100% renewable energy and zero CO2 emissions. This configuration is followed by the PV-DG-BB and PV-WT-DG-BB configurations, where the latter configuration incurs a marginal increase in the NPC than the former but with less land area. On the other hand, the PV-BB configuration is the most cost-effective in the Wafra cell-site; however, in the scenario of limited land area, then the PV-DG-BB configuration can be used but at the expense of slight increase in the NPC and CO2 emissions. This study confirms that utilizing renewable energy sources in two rural areas in Kuwait can be extremely effective in replacing conventional DG-powered base-stations, while minimizing the NPC and CO2 emissions.

Funder

Kuwait Foundation for the Advancement of Sciences

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3