Analyzing Intersectoral Benefits of District Heating in an Integrated Generation and Transmission Expansion Planning Model

Author:

Schwaeppe HenrikORCID,Böttcher LuisORCID,Schumann KlemensORCID,Hein LukasORCID,Hälsig PhilippORCID,Thams SimonORCID,Baquero Lozano Paula,Moser AlbertORCID

Abstract

In the field of sector integration, the expansion of district heating (DH) is traditionally discussed with regard to the efficient integration of renewable energy sources (RES) and excess heat. But does DH exclusively benefit from other sectors or does it offer advantages in return? So far, studies have investigated DH only as a closed system or determined intersectoral benefits in a highly aggregated approach. We use and expand an integrated generation and transmission expansion planning model to analyze how the flexibility of DH benefits the energy system and the power transmission grid in particular. First of all, the results confirm former investigations that show DH can be used for efficient RES integration. Total annual system cost can be decreased by expanding DH, due to low investment cost and added flexibility, especially from large-scale heat storage. The high short-term efficiency of heat storage—in combination with electric heating technologies—can be exploited to shift heat demand temporally and, using multiple distributed units, locally to solve electric grid congestion. Although it is unclear whether these results can be replicated in the real world, due to the aggregation and detail of the model, further research in this direction is justified.

Funder

European Union

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3