Life Cycle Assessment and Energy Balance of a Polygeneration Plant Fed with Lignocellulosic Biomass of Cynara cardunculus L.

Author:

Barros Lovate Temporim RamoonORCID,Cavalaglio GianlucaORCID,Petrozzi Alessandro,Coccia Valentina,Iodice PaolaORCID,Nicolini AndreaORCID,Cotana Franco

Abstract

This article aims to present an evaluation of the environmental performance of a combustion polygeneration plant fed with lignocellulosic material from cardoon (Cynara cardunculus L.) through the technique of Life Cycle Assessment (LCA). The system boundaries encompassed macro-phases of crop production, transportation, and polygeneration processes that were able to produce 100 kW of electricity, a residual thermal energy recovery system and district heating and cooling with 270 kW of heating, and a 140 kW of cooling. The LCA was performed using Cumulative Energy Demand and ReCiPe Life Cycle Impact Assessment methods through midpoint and endpoint indicators. From 2000 h/year, 165.92 GJ of electricity and 667.23 GJ of primary energy were consumed, and 32.82 tCO2eq were emitted. The rates of Greenhouse Gas (GHG) and energy demand per MJ produced were 0.08 MJSE/MJPD, 0.30 MJPE/MJPD, and 0.01 kgCO2eq/MJPD. According to the ReCiPe method, the impact categories with the highest impact loads were Terrestrial ecotoxicity (2.44%), Freshwater ecotoxicity (32.21%), Marine ecotoxicity (50.10%), Human carcinogenic toxicity (8.75%), and Human non-carcinogenic toxicity (4.76%). Comparing the same energy outputs produced by Italian power and gas grids, the proposed polygeneration plant was able to reduce primary energy demand and GHG emissions by 80 and 81%, respectively, in addition to reducing the emissions of the five main categories of impacts by between 25 and 73%.

Funder

Ministero dell'Istruzione dell'Università e della Ricerca

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3