Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions

Author:

Bohm MichaelORCID,Stetina JosefORCID,Svida David

Abstract

Modern automotive gasoline engines have highly efficient after-treatment systems that reduce exhaust gas emissions. However, this efficiency greatly depends on the conditions of the exhaust gas, mainly the temperature and air–fuel ratio. The temperature instability during transient conditions may cause a reduction in the efficiency of the three-way catalyst (TWC). By using a thermal energy storage system before TWC, this negative effect can be suppressed. In this paper, the effects of the temperature stabilization on the efficiency of the three-way catalyst were investigated on a 1-D turbocharged gasoline engine model, with a focus on fuel consumption and emissions. The thermal energy storage system (TESS) was based on PCM materials and was built in the exhaust between the turbine and TWC to use the energy of the exhaust gas. Three different materials were picked up as possible mediums in the storage system. Based on the results, the usage of a TESS in a gasoline after-treatment system has shown great potential in improving TWC efficiency. This approach can assist the catalyst to operate under optimal conditions during the drive. In this study, it was found that facilitating the heat transfer between the PCM and the catalyst can significantly improve the emissions’ reduction performance by avoiding the catalyst to light out after the cold start. The TESS with PCM H430 proved to reduce the cumulative CO and HC emissions by 8.2% and 10.6%, respectively, during the drive. Although a TES system increases the after-treatment cost, it can result in emission reductions and fuel consumption over the vehicle’s operating life.

Funder

Brno University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. European Commission (2019). The European Green Deal, European Commission.

2. European Commission (2022, February 19). Combined Evaluation Roadmap/Inception Impact Assessment. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12313-European-vehicle-emissions-standards-Euro-7-for-cars-vans-lorries-and-buses.

3. Three-way catalysts: Past, present and future;Guillen;Edición Espec.,2012

4. Catalytic automotive exhaust aftertreatment;Koltsakis;Prog. Energy Combust. Sci.,1997

5. Extending the potential of the dual-mode dual-fuel combustion towards the prospective EURO VII emissions limits using gasoline and OMEx;Villalta;Energy Convers. Manag.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3