Experimental Study on Connection Characteristics of Rough Fractures Induced by Multi-Stage Hydraulic Fracturing in Tight Reservoirs

Author:

Zhang Yanjun,Yan Le,Ge Hongkui,Liu Shun,Zhou Desheng

Abstract

The well spacing for the development of tight reservoirs by multi-stage fracturing is continuously narrowed. Consequently, interwell interference during fracturing is more and more serious, accompanied by a host of issues in fracturing design and oil and gas production. However, the mechanism of interwell interference during fracturing is not explicit. The corresponding laws of the connectivity of rough fractures during fracturing, which plays a critical role in interwell interference, are not fully understood. In this study, on the basis of characterizing the roughness of fractures, a laboratory evaluation method for fracture connectivity was established. The connectivity characteristics of rough fractures and factors affecting the fracture connectivity are studied. The time and scale effects of fracture connectivity were discussed and their application in interwell interference was analyzed. The results show that the connectivity performance of rough fractures can be characterized by the time for pressure decay. The upstream pressure gradually decreases over time, and the decline rate is related to the fracture aperture, the fracture surface roughness, the contact area of the closed fractures, and liquid properties. Specifically, the decrease in fracture aperture and the increase in fluid viscosity leads to a significant reduction in fracture connectivity. While larger fracture surface roughness and contact area can make fracture connectivity better. The connectivity of the fracture system is one of the significant mechanisms causing interwell interference during fracturing. The connectivity of rough fractures formed during fracturing has remarkable scale and time effects. This study can effectively guide the fracturing design and the evaluation of the impact of fracture connectivity on production.

Funder

the Strategic Cooperation Technology Projects of CNPC and CUPB;the National Natural Science Foundation of China;the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3