Author:
Li Jian,Song Qingfeng,Liu Ruiheng,Dong Hongliang,Zhang Qihao,Shi Xun,Bai Shengqiang,Chen Lidong
Abstract
La3Te4-based rare-earth telluride is a kind of n-type high-temperature thermoelectric (TE) material with an operational temperature of up to 1273 K, which is a promising candidate for thermoelectric generators. In this work, the Sm substitution in La3−xSmxTe4/Ni composites is reported. The electrical transport property of La3−xSmxTe4 is modified by reducing carrier concentration due to the substitution of Sm2+ for La3+. The electric thermal conductivity decreases by 90% due to carrier concentration reduction, which mainly contributes to a reduction in total thermal conductivity. Lattice thermal conductivity also decreases by point-defect scattering by Sm doping. Meanwhile, based on our previous study, compositing nickel improves the thermal stability of the La3 − xSmxTe4 matrix. Finally, combined with carrier concentration optimization and the decreased thermal conductivity, a maximum zT of 1.1 at 1273 K and an average zTave value of 0.8 over 600 K–1273 K were achieved in La2.315Sm0.685Te4/10 vol.% Ni composite, which is among the highest TE performance reported in La3Te4 compounds.
Funder
National Key Research and Development Program of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献