Research on Dynamic Reactive Power Cost Optimization in Power Systems with DFIG Wind Farms

Author:

Xu Qi1,Wang Yuhang1,Chen Xi2,Cao Wensi1ORCID

Affiliation:

1. School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

2. State Grid Sichuan Electric Power Company Meishan Power Supply Company, Meishan 620000, China

Abstract

As the power market system gradually perfects, the increasingly fierce competition not only drives industry development but also brings new challenges. Reactive power optimization is crucial for maintaining stable power grid operation and improving energy efficiency. However, the implementation of plant–grid separation policies has kept optimization costs high, affecting the profit distribution between power generation companies and grid companies. Therefore, researching how to effectively reduce reactive power optimization costs, both technically and strategically, is not only vital for the economic operation of the power system but also key to balancing interests among all parties and promoting the healthy development of the power market. Initially, the study analyzes and compares the characteristic curves of synchronous generators and DFIGs, establishes a reactive power pricing model for generators, and considering the randomness and volatility of wind energy, establishes a DFIG reactive power pricing model. The objective functions aimed to minimize the cost of reactive power purchased by generators, the price of active power network losses, the total deviation of node voltages, and the depreciation costs of discrete variable actions, thereby establishing a dynamic reactive power optimization model for power systems including doubly-fed wind farms. By introducing Logistic chaotic mapping, the CSA is improved by using the highly stochastic characteristics of chaotic systems, which is known as the Chaotic Cuckooing Algorithm. Meanwhile, the basic cuckoo search algorithm was improved in terms of adaptive adjustment strategies and global convergence guidance strategies, resulting in an enhanced cuckoo search algorithm to solve the established dynamic reactive power optimization model, improving global search capability and convergence speed. Finally, using the IEEE 30-bus system as an example and applying the improved chaotic cuckoo search algorithm for solution, simulation results show that the proposed reactive power optimization model and method can reduce reactive power costs and the number of discrete device actions, demonstrating effectiveness and adaptability. When the improved chaotic cuckoo algorithm is applied to optimize the objective function, the optimization result is better than 7.26% compared to the standard cuckoo search algorithm, and it is also improved compared to both the PSO algorithm and the GWO algorithm.

Funder

Academic Degrees and Graduate Education Reform Project of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3