Removal of Naphthalene, Fluorene and Phenanthrene by Recyclable Oil Palm Leaves’ Waste Activated Carbon Supported Nano Zerovalent Iron (N-OPLAC) Composite in Wastewater

Author:

Khurshid Hifsa1ORCID,Mustafa Muhammad Raza Ul2ORCID,Kilic Zeyneb3ORCID

Affiliation:

1. Department of Civil & Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

2. Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Department of Civil & Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

3. Department of Civil Engineering, Adıyaman University, 02000 Adıyaman, Turkey

Abstract

Despite keen interest in the development of efficient materials for the removal of polycyclic aromatic hydrocarbons (PAHs) in wastewater, the application of advanced composite materials is still unexplored and needs attention. Therefore, this study focused on the synthesis of the composite of oil palm leaves’ waste activated-carbon (OPLAC) and nano zerovalent iron (NZVI) at Fe:OPLAC = 1:1 (N-OPLAC-1) and 1:2 (N-OPLAC-2). The composite with enhanced surface properties was applied for removal of three PAHs including naphthalene (NAP), fluorene (FLU) and phenanthrene (PHE) in wastewater at various pH, dosages, contact time and initial concentration in batch testing. The PAHs’ removal parameters were optimized using design expert software. The PAHs’ removal efficiency was evaluated in produced water at optimized parameters. The results showed that the N-OPLAC-2 had superior surface properties compared to N-OPLAC-1. The removal of NAP, FLU and PHE was heterogenous, favorable and involved chemisorption proved by Freundlich isotherm and pseudo-second-order kinetic models using N-OPLAC-2. The optimum parameters were as follows: pH of 3, dosage and contact time of 122 mg/L and 49 min, respectively. The application of N-OPLAC-2 in produced water was favorable for removal of NAP, FLU and PHE and showed up to 90% removal efficiency, and higher stability up to 3 cycles. It can be concluded that the NZVI-OPLAC composite was successfully synthesized in this study and the materials showed good removal efficiency for three PAHs (NAP, FLU and PHE) in wastewater.

Funder

YUTP

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3