Spatial Scale Effect of a Typical Polarized Remote Sensor on Detecting Ground Objects

Author:

Zhang Ying,Sun Jingyi,Qiu Rudong,Liu Huilan,Zhang Xi,Xuan Jiabin

Abstract

For polarized remote sensors, the polarization images of ground objects acquired at different spatial scales will be different due to the spatial heterogeneity of the ground object targets and the limitation of imaging resolution. In this paper, the quantitative inversion problem of a typical polarized remote sensor at different spatial scales was studied. Firstly, the surface roughness of coatings was inversed based on the polarized bidirectional reflectance distribution function (pBRDF) model according to their polarization images at different distances. A linear-mixed pixel model was used to make a preliminary correction of the spatial scale effect. Secondly, the super-resolution image reconstruction of the polarization imager was realized based on the projection onto convex sets (POCS) method. Then, images with different resolutions at a fixed distance were obtained by utilizing this super-resolution image reconstruction method and the optimal spatial scale under the scene can be acquired by using information entropy as an evaluation indicator. Finally, the experimental results showed that the roughness inversion of coatings has the highest accuracy in the optimal spatial scale. It has been proved that our proposed method can provide a reliable way to reduce the spatial effect of the polarized remote sensor and to improve the inversion accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3