Abstract
The degradation kinetics of Direct Blue 15 (DB15), a diazo dye, were studied over a suspended and immobilized TiO2 catalyst. For all experiments, the kinetics experiments were performed in a swirl flow photoreactor under the influence of UV light. The effect of different parameters: dye concentration, catalyst loading, and light intensity, on the DB15 kinetics was investigated. The kinetic rates were assessed using apparent (ka) approach, a single value of reaction rate (kr) and adsorption constant (K), and approach of kr as of variable. The DB15 mineralization was discussed as well. Using a dip-coating device, the P25 catalyst was deposited on a Pyrex glass. The thin film surface characterization was examined. The coated catalyst was evaluated by checking the effect of two variables: initial dye concentration and light intensity on the DB15 kinetics. In terms of the ka approach, the results demonstrated that DB15 degradation is described by the pseudo first-order kinetics model. The Langmuir-Hinshelwood (L-H) model was fitted well with the experimental data for the number of process variables. L-H constant kr was determined as a function of three parameters: initial dye concentration, catalyst loading, and light intensity. The ka values were evaluated and compared with experimental results. In terms of three variables, ka can be expressed as ka=0.15 [C]o−0.69 [W]0.73 I0.91 1+0.17 [C]o while the empirical model results in the following expression, ka=0.77 [C]o−1.65 [W]0.73 Io0.89. It was observed that 83.64% mineralization was achieved after a period of 16 hrs. In terms of immobilized catalyst, the DB15 degradation kinetics was described by a pseudo first-order model for different dye concentrations. Meanwhile, a power-law model described the impact of light intensity on dye kinetics. In addition, the coated catalyst was successfully reusable with high efficiency for up to four cycles.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献