Study on a Hybrid Hydrological Forecasting Model SCE-GUH by Coupling SCE-UA Optimization Algorithm and General Unit Hydrograph

Author:

Xu Yingying1,Liu Chengshuai1,Yu Qiying1,Zhao Chenchen1,Quan Liyu1,Hu Caihong1ORCID

Affiliation:

1. Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China

Abstract

Implementing real-time prediction and warning systems is an effective approach for mitigating flash flood disasters. However, there is still a challenge in improving the accuracy and reliability of flood prediction models. This study develops a hydrological prediction model named SCE-GUH, which combines the Shuffled Complex Evolution-University of Arizona optimization algorithm with the general unit hydrograph routing method. Our aims were to investigate the applicability of the general unit hydrograph in runoff calculations and its performance in predicting flash flood events. Furthermore, we examined the influence of parameter variations in the general unit hydrograph on flood simulations and conducted a comparative analysis with the conventional Nash unit hydrograph. The research findings demonstrate that the utilization of the general unit hydrograph method can considerably decrease computational errors and enhance prediction accuracy. The flood peak detection rate was found to be 100% in all four study watersheds. The average Nash–Sutcliffe efficiency coefficients were 0.83, 0.83, 0.84, and 0.87, while the corresponding coefficients of determination were 0.86, 0.85, 0.86, and 0.94, and the absolute errors of peak present time were 0.19 h, 0.40 h, 0.91 h, and 0.82 h, respectively. Moreover, the utilization of the general unit hydrograph method was found to significantly reduce the peak-to-current time difference, thereby enhancing simulation accuracy. Parameter variations have a substantial influence on peak flow characteristics. The SCE-GUH model, which incorporates the topographic and geomorphological features of the watershed along with the optimization algorithm, is capable of effectively characterizing the catchment properties of the watershed and offers valuable insights for enhancing the early warning and prediction of hydrological forecasting.

Funder

Innovative research projects of the first-class project special fund of the Yellow River Laboratory

Projects of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference46 articles.

1. Characteristics of flash floods in China and their prevention and control ideas;Zhang;China Water Resour.,2007

2. A review of advances in China’s flash flood early-warning system;Liu;Nat. Hazards,2018

3. The intensification of short-duration rainfall extremes due to climate change—Need for a frequent update of intensity–duration–frequency curves;Tamm;Clim. Serv.,2023

4. A model for production and sink flow based on variable saturation zone and its parameter determination method;Li;Adv. Water Sci.,2022

5. Comparison of two early warning systems for regional flash flood hazard forecasting;Corral;J. Hydrol.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3