Root Traits and Soil Bacterial Composition Explain the Rhizosphere Effects along a Chronosequence of Rubber Plantations

Author:

Liu Guoyin1,Deng Danting1,Yang Meiqiu1,Sun Yanfei1

Affiliation:

1. Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, No. 58, Peoples Avenue, Haikou 570228, China

Abstract

Rubber tree plantations (Hevea brasiliensis) are expanding into the tropical regions of southwest China to ensure production to meet the growing demand for latex. The effects of long-term plantations on soil carbon processes are still unclear. Also, the effects of the plant’s rhizosphere on the decomposition of soil organic matter (SOM) play a crucial role in predicting soil carbon dynamics. The rhizosphere and soils corresponding to a chronosequence of ages (4, 15 and 30 years) of rubber plantations were collected and incubated to determine the effect of the rhizosphere (RE) on SOM decomposition. We also examined the soil physicochemical properties; bacterial community structure; and root morphological, chemical, and physiological traits to further explore the underlying mechanisms of the RE on SOM decomposition. The REs on SOM decomposition varied significantly in the different age classes of the rubber plantations, and the higher the REs on SOM decomposition in an older plantation might limit the accumulation of organic carbon in the soil. Root traits, including the specific root length, root nitrogen content, and root carbon/nitrogen ratio, varied significantly in response to the plantation age and explained more of the variance in the RE on SOM decomposition than the soil and microbial properties. Due to the changing root morphological and chemical traits along the age chronosequence, the rhizosphere bacterial community composition tended to shift the carbon utilisation strategy and the bulk soil nitrogen content decreased. These variations also affected the RE on SOM decomposition. Our results indicate that the development of rubber plantations would prevent soil carbon accumulation, especially in the rhizosphere, by increasing the RE on SOM decomposition, which would be predicated by root morphological and chemical traits.

Funder

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3