Cholecalciferol Supplementation Impacts Behavior and Hippocampal Neuroglial Reorganization in Vitamin D-Deficient Rats

Author:

Gáll Zsolt1ORCID,Csüdör Ágnes2,Sável István-Gábor3,Kelemen Krisztina4ORCID,Kolcsár Melinda1ORCID

Affiliation:

1. Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania

2. Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania

3. Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania

4. Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania

Abstract

Vitamin D deficiency (VDD) is widespread around the world and has been extensively documented to affect various health conditions, including the cognitive functioning of the brain. Serum 25-hydroxylated forms of vitamin D are traditionally used to determine vitamin D status. However, there is now evidence that cholecalciferol activation can occur and be controlled by locally expressed enzymes in the brain. This study aimed to investigate the effects of cholecalciferol supplementation on cognitive function in rats who underwent transient VDD in adulthood. Thirty-six adult Wistar rats were administered paricalcitol (seven doses of 32 ng injected every other day) along with a “vitamin D-free” diet to induce VDD, which was confirmed using a LC–MS/MS serum analysis of the cholecalciferol and 25-hydroxyvitamin D3 levels. Treatment was performed by including 1000 IU/kg and 10,000 IU/kg cholecalciferol in the diet. Cognitive performance was evaluated using the novel object recognition (NOR), Morris water maze (MWM), and radial arm maze (RAM) tests. An immunohistochemical analysis of the brain regions involved in learning and memory was performed by quantifying the neurons, astrocytes, and microglia labelled with anti-neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) antibodies, respectively. The vitamin D deficient group showed the lowest performance in both the MWM and RAM tests. In contrast, the cholecalciferol-treated groups exhibited a faster learning curve. However, no difference was detected between the groups in the NOR test. On the other hand, differences in the cellular organization of the hippocampus and amygdala were observed between the groups. Cholecalciferol supplementation decreased the density of the Iba-1- and GFAP-labeled cells in the hilus and cornu Ammonis 3 (CA3) regions of the hippocampus and in the amygdala. These results support vitamin D’s substantial role in learning and memory. They also highlight that subtle changes of cognitive function induced by transient VDD could be reversed by cholecalciferol supplementation. Further studies are needed to better understand VDD and cholecalciferol’s effects on the brain structure and function.

Funder

George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mureș

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3