Christensenella minuta Alleviates Acetaminophen-Induced Hepatotoxicity by Regulating Phenylalanine Metabolism

Author:

Yao Ting1,Fu Liyun1,Wu Youhe1,Li Lanjuan1

Affiliation:

1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China

Abstract

Acetaminophen (APAP)-induced liver injury (AILI), even liver failure, is a significant challenge due to the limited availability of therapeutic medicine. Christensenella minuta (C. minuta), as a probiotic therapy, has shown promising prospects in metabolism and inflammatory diseases. Our research aimed to examine the influence of C. minuta on AILI and explore the molecular pathways underlying it. We found that administration of C. minuta remarkably alleviated AILI in a mouse model, as evidenced by decreased levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) and improvements in the histopathological features of liver sections. Additionally, there was a notable decrease in malondialdehyde (MDA), accompanied by restoration of the reduced glutathione/oxidized glutathione (GSH/GSSG) balance, and superoxide dismutase (SOD) activity. Furthermore, there was a significant reduction in inflammatory markers (IL6, IL1β, TNF-α). C. minuta regulated phenylalanine metabolism. No significant difference in intestinal permeability was observed in either the model group or the treatment group. High levels of phenylalanine aggravated liver damage, which may be linked to phenylalanine-induced dysbiosis and dysregulation in cytochrome P450 metabolism, sphingolipid metabolism, the PI3K-AKT pathway, and the Integrin pathway. Furthermore, C. minuta restored the diversity of the microbiota, modulated metabolic pathways and MAPK pathway. Overall, this research demonstrates that supplementing with C. minuta offers both preventive and remedial benefits against AILI by modulating the gut microbiota, phenylalanine metabolism, oxidative stress, and the MAPK pathway, with high phenylalanine supplementation being identified as a risk factor exacerbating liver injury.

Funder

Fundamental Research Funds for the Central Universities

Shandong Provincial Laboratory Project

the Shandong Provincial Laboratory Project

the Research Project of Jinan Micro-ecological Biomedicine Shandong Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3