Abstract
Simultaneous monitoring of animal behavior and neuronal activity in the brain enables us to examine the neural underpinnings of behaviors. Conventionally, the neural activity data are buffered, amplified, multiplexed, and then converted from analog to digital in the head-stage amplifier, following which they are transferred to a storage server via a cable. Such tethered recording systems, intended for indoor use, hamper the free movement of animals in three-dimensional (3D) space as well as in large spaces or underwater, making it difficult to target wild animals active under natural conditions; it also presents challenges in realizing its applications to humans, such as the Brain–Machine Interfaces (BMI). Recent advances in micromachine technology have established a wireless logging device called a neurologger, which directly stores neural activity on ultra-compact memory media. The advent of the neurologger has triggered the examination of the neural correlates of 3D flight, underwater swimming of wild animals, and translocation experiments in the wild. Examples of the use of neurologgers will provide an insight into understanding the neural underpinnings of behaviors in the natural environment and contribute to the practical application of BMI. Here we outline the monitoring of the neural underpinnings of flying and swimming behaviors using neurologgers. We then focus on neuroethological findings and end by discussing their future perspectives.
Funder
Japanese Society for the Promotion of Science Kakenhi
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献