Minimum Values of Voltage, Current, or Power for the Ignition of Fire

Author:

Babrauskas VytenisORCID

Abstract

Under some circumstances, fires can be ignited by electric current. The two main mechanisms for this are arcing/sparking and hot surfaces. However, it has been viewed for a long time that this will not happen if the voltage, current, energy, or power are too low. The concept of a minimum ignition energy (MIE) characterizing the ignitability of flammable gas atmospheres is well established, and extensive published data are available. However, a corresponding ignition energy criterion for solids (minimum energy fluence) has been shown not to be valid. Some additional systematic experimental data (minimum voltage, current, power) have been collected for the spark ignition of gas atmospheres. However, it is found that the results are strongly dependent on the test conditions. Exceedingly scant data are available for the minimum electrical conditions for ignition of solid materials. Two concepts—intrinsic safety, and Class 2 or 3 power supplies—have long been available as safety measures against ignition from electrical circuit sources. However, ignition has been demonstrated to be possible with Class 2 power supplies. Ignition of solid material from a 1.2 V battery has been documented in the literature. Wide-ranging experimental research is urged to expand the knowledge base in this important area of electrical safety.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference61 articles.

1. Campbell, R.C. (2019). Home Electrical Fires, National Fire Protection Association.

2. The National Fire Data Center (2019). Fire in the United States, 2008–2017.

3. Icove, D.J., and Hargrove, T.K. (2014, January 1). Project Arson: Uncovering the True Arson Rate in the United States. Proceedings of the International Symposium on Fire Investigation (ISFI 2014), Sarasota, FL, USA.

4. Babrauskas, V. (2021). Electrical Fires and Explosions, Fire Science Publishers.

5. Ahrens, M. (2018). Brush, Grass, and Forest Fires, National Fire Protection Association.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3