Study on Temperature Attenuation in Diagonal Ventilation Network during Fire

Author:

Li JunqiaoORCID,Zhang WeiORCID,Li YuchengORCID

Abstract

The interaction between ventilation and fire development in diagonal pipe networks makes the study of temperature characteristics extremely complex. The thermodynamic effect caused by high temperature will change the original ventilation state, cause smoke flow retrogression and airflow reversal, and expand the disaster range. Therefore, exploring the temperature attenuation characteristics in diagonal pipe networks is necessary. In this article, the temperature distribution and attenuation in a diagonal pipe network are studied using the numerical simulation method based on the theoretical model of temperature attenuation in a single roadway. In the diagonal branch, the St number in the temperature attenuation model is optimized. The temperature attenuation of the left and right paths can be divided into two stages. The optimal St number of the temperature attenuation model under different wind speeds in the left way is determined. The fitting relationship of wind speed, distance, and temperature in the first stage of the right way is established, and the fire source distance in the second stage of the right way has the most significant influence on the temperature attenuation by using the method of multivariate statistics. The temperature of the smoke backflow front in the left and right paths decreases gradually with the increase in the fire source, and the temperature of the smoke backflow front in the left way is higher than that in the right way.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3