Evacuation Time Estimation Model in Large Buildings Based on Individual Characteristics and Real-Time Congestion Situation of Evacuation Exit

Author:

Deng Qing,Zhang Bo,Zhou Zheng,Deng Hongyu,Zhou Liang,Zhou Zhengqing,Jiang Huiling

Abstract

Fire is one of the most common and harmful disasters in real life. In 2021, firefighting teams in China reported 748,000 fires, resulting in 1987 deaths, 2225 injuries and CNY 6.75 billion of direct property losses, which account for 0.05‰ of GDP. Scientific and accurate estimation of evacuation time can provide decision support for intelligent fire evacuation. This paper aims to effectively improve the evacuation efficiency of people in large buildings, especially for a scenario with intricate evacuation passages. There are many factors that make a difference in evacuation time, such as individual behavior, occupant density, exit width, and so on. The people distribution density is introduced to effectively assess the impact of unstable pedestrian flow and unbalanced distribution in the process of evacuation. The verification results show that there is a strong positive correlation between people distribution density and evacuation time. Combining the people distribution density with many other factors, the training dataset is built by Pathfinder to learn the relationship between evacuation time and influencing factors. Finally, an evacuation time prediction model is established to estimate the consumption time that occupants spend on moving in the evacuation process based on stacking integration. The model can assist occupants in choosing different channels for evacuation in advance. After testing, the average error between the predicted evacuation consumption time and the reference time is 3.63 s. The result illustrates that the model can accurately predict the time consumed in the process of evacuation.

Funder

National Key R&D Program of China

National Science Foundation of China

Science and Technology Program of The Ministry of Emergency Management

High-tech Discipline Construction Fundings for Universities in Beijing

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3