A Hybrid Finite Element—Machine Learning Backward Training Approach to Analyze the Optimal Machining Conditions

Author:

George Kriz,Kannan Sathish,Raza Ali,Pervaiz SalmanORCID

Abstract

As machining processes are complex in nature due to the involvement of large plastic strains occurring at higher strain rates, and simultaneous thermal softening of material, it is necessary for manufacturers to have some manner of determining whether the inputs will achieve the desired outputs within the limitations of available resources. However, finite element simulations—the most common means to analyze and understand the machining of high-performance materials under various cutting conditions and environments—require high amounts of processing power and time in order to output reliable and accurate results which can lead to delays in the initiation of manufacture. The objective of this study is to reduce the time required prior to fabrication to determine how available inputs will affect the desired outputs and machining parameters. This study proposes a hybrid predictive methodology where finite element simulation data and machine learning are combined by feeding the time series output data generated by Finite Element Modeling to an Artificial Neural Network in order to acquire reliable predictions of optimal and/or expected machining inputs (depending on the application of the proposed approach) using what we describe as a backwards training model. The trained network was then fed a test dataset from the simulations, and the results acquired show a high degree of accuracy with regards to cutting force and depth of cut, whereas the predicted/expected feed rate was wildly inaccurate. This is believed to be due to either a limited dataset or the much stronger effect that cutting speed and depth of cut have on power, cutting forces, etc., as opposed to the feed rate. It shows great promise for further research to be performed for implementation in manufacturing facilities for the generation of optimal inputs or the real-time monitoring of input conditions to ensure machining conditions do not vary beyond the norm during the machining process.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3