Comparison and Verification of Reliability Assessment Techniques for Fuel Cell-Based Hybrid Power System for Ships

Author:

Jeon HyeonminORCID,Park Kido,Kim Jongsu

Abstract

In order to secure the safe operation of the ship, it is crucial to closely examine the suitability from the design stage of the ship, and to set up a preliminary review and countermeasures for failures and defects that may occur during the construction process. In shipyards, the failure mode and effects analysis (FMEA) evaluation method using risk priority number (RPN) is used in the shipbuilding process. In the case of the conventional RPN method, evaluation items and criteria are ambiguous, and subjective factors such as evaluator’s experience and understanding of the system operate a lot on the same contents, resulting in differences in evaluation results. Therefore, this study aims to evaluate the safety and reliability for ship application of the reliability-enhanced fuel cell-based hybrid power system by applying the re-established FMEA technique. Experts formed an FMEA team to redefine reliable assessment criteria for the RPN assessment factors severity (S), occurrence (O), and detection (D). Analyze potential failures of each function of the molten-carbonate fuel cell (MCFC) system, battery system, and diesel engine components of the fuel cell-based hybrid power system set as evaluation targets to redefine the evaluation criteria, and the evaluation criteria were derived by identifying the effects of potential failures. In order to confirm the reliability of the derived criteria, the reliability of individual evaluation items was verified by using the significance probability used in statistics and the coincidence coefficient of Kendall. The evaluation was conducted to the external evaluators using the reestablished evaluation criteria. As a result of analyzing the correspondence according to the results of the evaluation items, the severity was 0.906, the incidence 0.844, and the detection degree 0.861. Improved agreement was obtained, which is a significant result to confirm the reliability of the reestablished evaluation results.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference42 articles.

1. Maritime Safety Committee (MSC) 101 Session http://bitly.kr/U7R2WN6

2. Trends in IMO for Ship Safety and Marine Environment Protection http://bitly.kr/WgqktaA4

3. IMO International Maritime Policy Trend http://bitly.kr/NuQogc3i

4. Guidelines for Integrating Process Safety into Engineering Projects;Broadribb,2019

5. Reliability in Automotive and Mechanical Engineering;Bertsche,2008

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A quantitative dynamic risk assessment for ship operation using the fuzzy FMEA: The case of ship berthing/unberthing operation;Ocean Engineering;2023-11

2. Decision mechanism between fuel cell types: A case study for small aircraft;International Journal of Hydrogen Energy;2023-07

3. Reliability Modelling of Marine Hybrid Power and Propulsion System Considering Operation Profile;2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC);2023-03-29

4. Safe Design of a Hydrogen-Powered Ship: CFD Simulation on Hydrogen Leakage in the Fuel Cell Room;Journal of Marine Science and Engineering;2023-03-20

5. Failure modes and effect analysis model for the reliability and safety evaluation of a pressurized steam trap;Engineering Reliability and Risk Assessment;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3