AUV 3D Path Planning Based on the Improved Hierarchical Deep Q Network

Author:

Sun Yushan,Ran Xiangrui,Zhang GuochengORCID,Xu HaoORCID,Wang Xiangbin

Abstract

This study proposed the 3D path planning of an autonomous underwater vehicle (AUV) by using the hierarchical deep Q network (HDQN) combined with the prioritized experience replay. The path planning task was divided into three layers, which realized the dimensionality reduction of state space and solved the problem of dimension disaster. An artificial potential field was used to design the positive rewards of the algorithm to shorten the training time. According to the different requirements of the task, this study modified the rewards in the training process to obtain different paths. The path planning simulation and field tests were carried out. The results of the tests corroborated that the training time of the proposed method was shorter than that of the traditional method. The path obtained by simulation training was proved to be safe and effective.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3