Optimized Dislocation of Mobile Sensor Networks on Large Marine Environments Using Voronoi Partitions

Author:

D’Acunto MarioORCID,Moroni DavideORCID,Puntoni Alessandro,Salvetti OvidioORCID

Abstract

The real-time environmental surveillance of large areas requires the ability to dislocate sensor networks. Generally, the probability of the occurrence of a pollution event depends on the burden of possible sources operating in the areas to be monitored. This implies a challenge for devising optimal real-time dislocation of wireless sensor networks. This challenge involves both hardware solutions and algorithms optimizing the displacements of mobile sensor networks in large areas with a vast number of sources of pollutant factors based mainly on diffusion mechanisms. In this paper, we present theoretical and simulated results inherent to a Voronoi partition approach for the optimized dislocation of a set of mobile wireless sensors with circular (radial) sensing power on large areas. The optimal deployment was found to be a variation of the generalized centroidal Voronoi configuration, where the Voronoi configuration is event-driven, and the centroid set of the corresponding generalized Voronoi cells changes as a function of the pollution event. The initial localization of the pollution events is simulated with a Poisson distribution. Our results could improve the possibility of reducing the costs for real-time surveillance of large areas, and other environmental monitoring when wireless sensor networks are involved.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transmission Control Over Satellite Network for Marine Environmental Monitoring System;IEEE Transactions on Intelligent Transportation Systems;2022-10

2. A mobile crowdsensing app for improved maritime security and awareness;2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2022-03-21

3. Multiple AUVs for Ocean Phenomena Monitoring: A Review;2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC);2022-01-08

4. Coverage control of unicycle multi‐agent network in dynamic environment;Mathematical Methods in the Applied Sciences;2021-09-19

5. Signals and Images in Sea Technologies;Journal of Marine Science and Engineering;2021-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3