A New Solution for Sea Wave Energy Harvesting, the Proposal of an Ironless Linear Generator

Author:

Curto DomenicoORCID,Viola Alessia,Franzitta VincenzoORCID,Trapanese MarcoORCID,Cardona Fabio

Abstract

The paper investigates an innovative ironless linear generator, installable inside a wave energy converter, in order to produce electricity from sea waves. This energy source is considered strategic for the future, especially in small islands; however, this technology is still far from the commercial phase. Considering the wave energy potential of the Mediterranean Sea, a first prototype of the electrical linear generator was realized at the Department of Engineering of Palermo University. This machine can be run by a two-floating buoys system, able to produce a linear vertical motion. The main goal of this paper is the investigation of the advantages and the disadvantages of the utilization of steel materials to realize the stator of linear generators. Thus, starting from the prototype, the authors analyzed the effects produced by the replacement of steel in the stator with a non-magnetic material. For comparison, the authors evaluated the amplitude of no-load voltages, using a three-phase connection scheme, and the amplitude of the magnetic force produced by the interaction of magnets with the stator. Both aspects were evaluated through numerical simulations and mathematical models.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference58 articles.

1. A review of renewable energy sources, sustainability issues and climate change mitigation

2. Wave energy potential along the Atlantic coast of Morocco

3. Energy and Climate Change,2015

4. Enerdata Global Energy Statistical Yearbookhttps://yearbook.enerdata.net/

5. Renewable Capacity Statistics 2019,2019

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3