Physics-Informed Data-Driven Prediction of 2D Normal Strain Field in Concrete Structures

Author:

Pereira MauricioORCID,Glisic BrankoORCID

Abstract

Concrete exhibits time-dependent long-term behavior driven by creep and shrinkage. These rheological effects are difficult to predict due to their stochastic nature and dependence on loading history. Existing empirical models used to predict rheological effects are fitted to databases composed largely of laboratory tests of limited time span and that do not capture differential rheological effects. A numerical model is typically required for application of empirical constitutive models to real structures. Notwithstanding this, the optimal parameters for the laboratory databases are not necessarily ideal for a specific structure. Data-driven approaches using structural health monitoring data have shown promise towards accurate prediction of long-term time-dependent behavior in concrete structures, but current approaches require different model parameters for each sensor and do not leverage geometry and loading. In this work, a physics-informed data-driven approach for long-term prediction of 2D normal strain field in prestressed concrete structures is introduced. The method employs a simplified analytical model of the structure, a data-driven model for prediction of the temperature field, and embedding of neural networks into rheological time-functions. In contrast to previous approaches, the model is trained on multiple sensors at once and enables the estimation of the strain evolution at any point of interest in the longitudinal section of the structure, capturing differential rheological effects.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Concrete Microstructure, Properties, and Materials;Mehta,2013

2. Creep and Hygrothermal Effects in Concrete Structures;Bazant,2018

3. Concrete Durability;Dyer,2019

4. Long-Term Durability of Marine Reinforced Concrete Structures

5. Fiber Bragg Grating–Differential Settlement Measurement System for Bridge Displacement Monitoring: Case Study

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3