Blind Image Watermarking in Canonical and Cepstrum Domains Based on 4-Connected t-o’clock Scrambling

Author:

Chowdhury Farhana Shirin,Dhar Pranab Kumar,Deb Kaushik,Koshiba TakeshiORCID

Abstract

Copyright protection of multimedia content is confronted with great challenges such as easy access to the Internet. Digital watermarking is widely applicable technique for copyright protection of multimedia contents. In this paper, a blind symmetric watermarking method in canonical and cepstrum domains based on four-connected t-o’clock scrambling is proposed. Initially, the watermark image is scrambled using the four-connected t-o’clock method to enhance the security. Then, the rotation operation is applied to the host image to extract the region where the watermark bits are embedded. After that, discrete linear canonical transform (DLCT) is applied to the extracted region to obtain the DLCT region. Cepstrum transform (CT) is performed on DLCT region to attain CT region. The CT region is then divided into non-overlapping blocks. The watermark bits are inserted into each block using max-heap and min-heap tree property. Experimental results illustrate that the proposed method shows high robustness against numerous attacks. Moreover, it produces high quality watermarked images and provides high security. Furthermore, it has superior performance to recent methods in terms of imperceptibility, robustness, and security.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secured Information Communication Exploiting Fuzzy Weight Strategy;Proceedings of International Conference on Network Security and Blockchain Technology;2023-11-29

2. A new DCT based robust image watermarking scheme using cellular automata;Information Security Journal: A Global Perspective;2021-08-09

3. An improved watermarking scheme for color image using alpha blending;Multimedia Tools and Applications;2021-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3