Abstract
Multiple attribute decision making (MADM) is full of uncertainty and vagueness due to intrinsic complexity, limited experience and individual cognition. Representative decision theories include fuzzy set (FS), intuitionistic fuzzy set (IFS), hesitant fuzzy set (HFS), dual hesitant fuzzy set (DHFS) and so on. Compared with IFS and HFS, DHFS has more advantages in dealing with uncertainties in real MADM problems and possesses good symmetry. The membership degrees and non-membership degrees in DHFS are simultaneously permitted to represent decision makers’ preferences by a given set having diverse possibilities. In this paper, new distance measures for dual hesitant fuzzy sets (DHFSs) are developed in terms of the mean, variance and number of elements in the dual hesitant fuzzy elements (DHFEs), which overcomes some deficiencies of the existing distance measures for DHFSs. The proposed distance measures are effectively applicable to solve MADM problems where the attribute weights are completely unknown. With the help of the new distance measures, the attribute weights are objectively determined, and the closeness coefficients of each alternative can be objectively obtained to generate optimal solution. Finally, an evaluation problem of airline service quality is conducted by using the distance-based MADM method to demonstrate its validity and applicability.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献