Research on Rotorcraft Blade Tip Vortex Identification and Motion Characteristics in Hovering State

Author:

Du HaiORCID,Kong Wenjie,Wang Yan,Liu Wenjing,Huang Mingqi,Zhang Weiguo,Tang Min

Abstract

The rotorcraft blade tip vortex rolled up by the blade tip when the rotor rotates at high speed will produce a complex induced velocity field, which will have an important impact on the aerodynamic load and performance of the rotor. For this reason, this paper carries out the research on the identification of blade tip vortex and the motion characteristics of the vortex. Through the time-resolved particle image velocimetry (TR-PIV) experiment, the flow field of the rotor at a fixed rotate speed (2100 r/min) with a collective pitch of 6° and 9° was obtained. Based on the vorticity field, Q criterion, and Ω criterion, the research on vortex identification and vortex motion characteristics are realized. The results show that with the increase of blade motion azimuth, the radial position of blade tip vortex gradually contracts inward and the axial position moves downward in hovering state. As the collective pitch of the rotor increases, the radial contraction becomes more obvious, and the axial displacement increases, at the same time, the blade tip vortex intensity increases. Comparative study results show that different vortex identification methods have obtained certain deviations in the vortex center. Compared with other vortex identification methods, the Ω criterion method has a smaller deviation and can accurately identify the vortex core radius and vortex boundary.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3