LiDAR and Camera Fusion Approach for Object Distance Estimation in Self-Driving Vehicles

Author:

Kumar G AjayORCID,Lee Jin Hee,Hwang Jongrak,Park Jaehyeong,Youn Sung Hoon,Kwon Soon

Abstract

The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation, and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the detection of objects at short and long distances. As both the sensors are capable of capturing the different attributes of the environment simultaneously, the integration of those attributes with an efficient fusion approach greatly benefits the reliable and consistent perception of the environment. This paper presents a method to estimate the distance (depth) between a self-driving car and other vehicles, objects, and signboards on its path using the accurate fusion approach. Based on the geometrical transformation and projection, low-level sensor fusion was performed between a camera and LiDAR using a 3D marker. Further, the fusion information is utilized to estimate the distance of objects detected by the RefineDet detector. Finally, the accuracy and performance of the sensor fusion and distance estimation approach were evaluated in terms of quantitative and qualitative analysis by considering real road and simulation environment scenarios. Thus the proposed low-level sensor fusion, based on the computational geometric transformation and projection for object distance estimation proves to be a promising solution for enabling reliable and consistent environment perception ability for autonomous vehicles.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3