Implementation of Antibacterial Nanoparticles in Additive Manufacturing to Increase Part Strength and Stiffness

Author:

Billings Christopher,Kim Peter,Shadid Tyler,Ballard Jimmy D.,Cai Changjie,Liu YingtaoORCID

Abstract

The introduction of novel composites suited for additive manufacturing machines offers a solution for the current slow adoption of the technology. Many composites offer secondary functions and mechanical improvements to suit unique applications better. This article presents the creation of a set of novel nanocomposites consisting of zinc oxide (ZnO) and a photocurable resin using a masked stereolithography additive machine. These nanocomposites are produced in 1%, 2.5%, 5%, and 7.5% concentrations and are characterized based on their mechanical and surface properties. Using ZnO allows for the creation of mechanically stronger parts with reduced wettability while offering antibacterial properties throughout the entire part. Best results were observed at a 5% concentration of ZnO with a nearly 25% strength increase and 45% decrease in wettability. Additionally, SEM analysis demonstrated proper dispersion with minimal agglomerations present. In the sporicidal effect analysis, the ZnO (with 7.5% concentration) reduced 31.5% of Clostridioides difficile spores. These results demonstrate the capability of producing antibacterial nanocomposites using low-cost additive manufacturing to enhance public health options.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3